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136. O n  the Chemical Kinetics of Autosynthetic Systems. 

By SIR CYRIL N. HINSHELWOOD. 
A general treatment is given of the chemical kinetics of certain types of 

co-ordinated reactions. It is shown that where several components are 
synthesised by the use of mutually supplied intermediates there is a steady 
state in which each separate component increases according to the simple 
exponential law of autosynthesis. Before the steady state is reached there 
may be lag phases, or even periodic variations in rate. The conditions under 
which the kinetic equations can be applied to material subject to cell 
division are considered. Changes of proportions accompanying transfer to 
new media or to media containing inhibitors are shown to be possible, and 
the rate and relative permanence of these adaptive changes are discussed. 

The relation of the equations derived to the phenomena shown by living 
cells is indicated, and a hypothesis about the mode in which new enzymes 
may arise in response to new substrates is outlined. 

MASSES of living matter reduplicate themselves by processes involving an elaborate 
co-ordination of enzyme reactions. Quite apart from their biological significance such 
systems present problems which are novel and important from the point of view of chemical 
kinetics generally. Various kinetic propositions about autosynthetic mechanisms have 
been formulated from time to time in connexion with experimental studies of bacterial 
growth made in this laboratory, but they have been published in various places and some- 
times in bioJogica1 journals. The object of this paper is partly to collect and systematise 
some of these propositions, partly to elaborate and extend them, and partly to indicate 
the chemical interest of the biological facts without any obscuring of the issues iby 
bacteriological technicalities. 

Equations of Autosyrtthesis.-In constant surroundings living matter such as that 
contained in a unicellular organism reproduces all its parts according to the equation 

dX/dt = kX or X = XOekt . . . . . . . (1) 

This occurs by the interplay of enzyme reactions. 
autocatalytically, so the origin of equation (1) is of interest. 

something derived from the working of the other. Then we shall have 

Yet enzymes in isolation do not increase 

Suppose we have two enzymes each of which increases its substance by the addition of 

dX/dt = a Y  and dY/dt = pX . . . . , . . (2) 

X = Plekt + Qle-kt and Y = P2ekt + Q c k l  . . . . (3) 

The solutions of these equations are 

where P, + Q1 = X o  and Pz + Q2 = Yo, Xo and Yo being the amounts of X and Y at 
time zero. 

It follows that 

where ab = k2. 
When t is sufficiently great the terms in e-kt vanish and the ratio X / Y  assumes the 

constant value X ,  + Y o ) / (  Yo + k Xo) = a/k .  If now a portion of the system in 
which this constant ratio is established is separated and becomes the starting point of 

( 
3 c  
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a new autosynthetic system (as when bacteria are subcultured), X,/Y0 = a/k .  
these circumstances (4a) and (4b) reduce simply to 

In 

X = Xoekt and Y = YOekz 

and each separate component increases with time as though it were formed by the simple 
autocatalytic law (1). 

It is of interest to note that this result holds generally when the interplay is between 
more than two components. For the case of three we have 

(5) dX/dt = a Y ,  dY/dt = PZ, dZ/dt = yX . . . . 
Differentiation shows that d3X/dt3 = aPyX = k3X,  with similar expressions in Y and 2. 
The solutions are of the form 

X = Plekt + Qle@lkt + lile@Zk 

where P, + Q1 + 22, = Xo and 1, pl, and 1.1, are the three cube roots of unity, so that 

. .  

. .  

. .  

From these three equations it is easily verified by substitution that the values when 
t = 0 are X,, Y o ,  and 2, respectively, and that the original first-order differential equations 
are satisfied. 

We then have constant 
ratios of X, Y, and 2. 

When t becomes great the terms in eplkt and e@rkt vanish. 
For example in these circumstances 

Also X / Z  = aP/k2 

Once again we see that if some of the material is used to start a new system in 
which X,, Yo, and 2, are in this proportion, then each of the components continues to 
follow equation (l), the terms in e@ikf and epakt now vanishing throughout, since 

For the purpose of what is to follow later it will be convenient to give the solutions for 

dX,/dt = ax,, dX,/dt = PX3, dX,/dt = yX4 ,  dX4/dt = 6X,  

P, + v, = -1. 

the case of four interdependent components, namely, where 

We have d4X,/dt4 = aPy8X1, where aPy8 = k4. 
one of the four fourth roots of unity. 

A solution is X ,  = A l e k t ,  where p is 
The general solutions are 

X ,  = Alekt + Ble-kt + Cleikt + Dle-ikt . . . . . (7) 
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with corresponding expressions for X,, X,, and X4.  
the values for t = 0 that 

It is further found by introduction of 

+ ( x 2 > 0 / a  + < X 3 ) 0 / b  + <x4>0/c> 
B 1  = k ( ( x l ) O  - ( X 2 ) 0 / a  + ( X 3 ) 0 / b  - (x4)0/c1 
c1 = - 2: (X2)0 /a  - ( X 3 ) 0 / b  + i(x4)0/c) 
Dl = B ( ( x l ) O  + Z ( X 2 ) 0 / a  - ( X 3 ) O / b  - i(x4)0/c1 

where a = k / a ,  b = k 2 / @ ,  and c = k3/uFy. 
Further, 

A , :  A , :  A , :  A ,  = 1 : a :  b :  c, B,:  B,: B 3 :  B, = 1 : - a :  b :  -c, 
C, :  C,: C,: G4 = 1 : ia  : -b : -ic, D,: D2 : D , :  D ,  = 1 : -ia : - b  : ic 

Once again we find that when t is large the ratios of X,, X 2 ,  X,, and X4 become independent 
of time and are, in fact, 1 : a : b : c. Each component, moreover, now follows a law of the 
simple form 

(1 /X,)dX,/dt = k 
The result is, in fact, general, since if we have a system of r interlinked components we 

obtain a differential equation of the rth order for each, dfX/dtr = kX. The general 
solution will be the sum of Y terms of the type Aepkt, where p is the complex rth root of 
unity. These rth roots form a geometrical series, and only the term in ekt remains of 
importance when the time is sufficiently great. 

The results of this section show, therefore, that non-autosynthetic enzyme systems can 
combine in such a way that each does in fact in the steady state increase according to the 
autosynthetic law. 

The kinds of equation discussed probably apply with special importance to the inter- 
play of nucleic acids and proteins in cells, each of these constituents appearing to play a 
decisive part in directing the synthesis of the other (cf. Malmgren and Heden, Acta Path. 
Microbiol. Scand., 1947, 24, 448; Caldwell and Hinshelwood, J., 1950, 3156). 

Behaviour before the Steady State i s  reached : Lag Phenomena.-The sets of equations 
(4), (6), and (7) have further properties of great interest in connexion with the properties of 
living cells. We will first consider the case where t is small so that the steady state is not 
reached, and where the initial proportions of the components are arbitrary. This would 
correspond to the transfer of a small amount of material which had reached a steady state 
in one environment into another where the relevant rate constants were different and 
where a different steady state would finally be attained. 

It will first be convenient to transform the equations of the sets (6) and (7) so as to 
remove the imaginary quantities, as can be done in the standard way by the introduction 
of the exponential values for sine and cosine. Equation (6a)  then becomes 

+ d$ ( i  - Yo - 92,) k2 s i n q k t }  . . (8a) 
and equation (6b) becomes 

k 2/3 { ( 2 Y ,  - a X ,  - 2,) cos -- kt 2 

with an analogous expression for 2. 

of the expressions found, i.e., 
The equations of the set (7) are similarly transformed, the value for X ,  being typical 

= a { < x l ) O  + ( X 2 > 0 / a  -k ( X 3 ) 0 / b  + (X4)0/c)ekt + - ( X 2 ) 0 / a  + ( X 3 ) O / b  - (X4)0/c)e-kt 
+ @(X,), - 2(X3),/b) cos kt + 4{2(X2),/a - ~(X,>,/C) sin kt . . (94  
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The equations of the sets (8) and (9) show that until the first and major exponential term 
predominates the trigonometrical terms will give rise to fluctuations in the rates of increase. 
If, for example, we start with Yo and 2, zero in (8a) or with all the values save that of X, 
zero in (9a)  then, superposed on the general exponential increase of X (or X I )  there will 
be a periodic variation. In  the actual cases considered this effect is not very important 
since the amplitudes of the sine and cosine functions are small compared with the rates of 
increase of the terms in ekt, but the principle is significant. I n  actual fact when a bacterial 
culture is prepared in one medium and a small portion of it is transferred to a completely 
different medium it is often a long time before growth settles down to follow the simple 
exponential law. In  the initial stages there are often very irregular rates of increase in 
mass with curious bursts of growth and arrests, indicating the non-existence of a harmonious 
co-ordination of the various reactions involved. 

Of more general importance, however, than these small-scale irregularities is the 
existence of a considerable lag which may precede the establishment of the steady state. 
This, of course, corresponds to the period of delay which is almost always observed when a 
bacterial culture is sampled and transferred to new surroundings. 

If we start with Yo 
equal to zero then 

The principle is evident from an inspection of equation (4a).  

X = &Xo(ekt + edEt) 

Expansion of the exponential terms leads to the expression 

X = X,(1 + Qk2t2 + . . .  .) . . . . . .  (10) 
the terms in the first power of t having vanished. Thus the initial slope of the curve of X 
against t is zero, and there is a delay in the establishment of the normal rate of increase. 
The delay increases in an interesting way as the complexity of the interlocking of the 
various systems increases. With the three-component system we have from (8a) when 
Yo and 2, are zero 

and when the exponential and cosine terms are expanded in powers of t this gives 

where not only the first but also the second differential coefficient of X with respect to the 
time vanishes. 

Equation (9a)  with all the initial values zero save that of X, gives 

. . . .  . . . . .  (12) 

where the first three differential coefficients vanish at t = 0. 

components the corresponding expression would be 
From (lo), ( l l ) ,  and (12) we can infer that  for the case of n interdependent 

. . .  . . . . . .  X = Xo(l + (kt)"/n! + .} (13) 
according to which the rate would rise very slowly to its steady value when n is 
considerable. 

With the n components we 
shall have differential equations of the form dnX/dtn = knX. The solution of this is of 
the type 

The general form (13) can be derived directly as follows. 

X ,  = Alekt + Blerkt + Cley*kt + . . . .  Pefl-'kf 

where I ,  r ,  r2 . . .  rn-l are the nth roots of unity, which are known to form a series in 
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geometrical progression. The constants A ,  . . . etc., are linear functions of (Xl)o, etc., 
so that we have, when the initial values of all the components save X, are zero 

The successive exponential terms can be expanded, and the coefficients of kt found. That 
of kt is (1 + r + r2 + . . . + P-,) = (1 - rn)/(l - r )  which is zero since rpt = 1. 
Similarly that of ( K t ) " - l  is found to be zero. 

which is 

That, however, of (Kt)" is 
(I/n!)(l + P + r 2 n  + . . . . + f i n - l b )  

since fi = Y" = 1. Thus 

= (xl)o{l + (Kt)"/ut! + . . . .> 

complex the inter- 
required for the 

as in (13). 
The general conclusion to be drawn from the above is that the more 

depend&ce of the various processes the longer will be the time 
establishment of the steady state where the simple exponential law of autocatalytic growth 
is obeyed. The presumed complexity of the interdependence in living cells readily 
explains the pronounced tendency for lag phases to declare themselves in the phenomena 
of bacterial growth. It also appeared from the earlier part of this section that when 
systems are badly out of adjustment more complicated irregularities such as arrests and 
accelerations of growth are in principle possible, though the simplified nature of the models 
here considered hardly does justice to the real examples encountered. A rather more 
specialised theory on the same general lines as the above and in which very long lags may 
attend the interdependence of two processes only has been given already (Hinshelwood, 
" Chemical Kinetics of the Bacterial Cell," Oxford, 1946, p. 82). 

Cell Division and Its Introduction into Kinetic Treatments of Growth.-Living matter 
displays its characteristic properties essentially when organised in cells. When cells have 
grown beyond a certain size they normally divide. This process is a physicochemical 
necessity for the maintenance of approximately constant conditions of concentration, even 
with a standard external medium, since gains and losses from the cell depend upon its 
surface area while the sum of its synthetic reactions is a function of its volume. It might 
be thought that the kinetic treatment of cell reactions would demand a detailed hypothesis 
about the mechanism of cell division, but this is not so, at  least for many purposes. 

The cell may be imagined to divide when some structure within it exceeds a critical 
size for stability, or alternatively when the concentration of some active substance within 
it reaches a critical value. In either case the condition will be that the amount of some 
cellular component attains a more or less standard value. Such an assumption is strongly 
suggested by the finding that, for example, the amount of deoxyribose nucleic acid per cell 
is very nearly constant despite wide variations of growth conditions, but there is no very 
urgent need to specify the substance or component in question. Suppose, for example, 
that some concentration, c, within the cell must reach a value c ,  for division to occur. If x 
is the amount of the enzyme Fystem producing this, then we shall have dcldt = ax - bc, 
where a and b are constants in a given set of circumstances. This equation expresses 
the fact that the rate of loss of the active substance, whether by diffusion or by consumption 
in chemical change, is proportional to c. A steady state will be very rapidly set up in a 
cell so that dc/dt = 0, Le., so that c = kx ,  and the critical concentration c, will correspond 
to .a critical amount x1 per cell of the enzymic component, just as it would if the condition 
were an unstable critical size of this component itself. 

Without, therefore, making specific assumptions about the precise mechanism of 
division, we may take cognisance of its occurrence and necessity in the following way. We 
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represent the total amounts, not per cell but in the whole mass of matter present, of the 
various constituents by X ,  Y, and so on. The corresponding amounts per cell are x, y, 
and so on, which are respectively XI., Y/n . . . , where n is the number of cells. One of 
the constituents, for example Y, fills the r61e considered above, a critical value y, 
determining the division. Then we shall have y1 which is proportional to Y/n as a constant, 
i.e., Y / H  = p. 

We now have (l/n)dn/dt = (l/Y)dY/dt as an invariant condition. When a steady 
state prevails (l/X)dX/dt = (l/Y)dY/dt = . . . , but when it does not, as in the vitally 
important periods of adjustment to new environmental conditions, it is only the Y increase 
which is directly correlated with that of n. 

This principle will be illustrated by a discussion of adaptive changes in the proportions 
of the components of autosynthetic systems in various circumstances. 

Adafitive Phenomena.-One of the most remarkable properties of bacterial cells is their 
power of adapting themselves to resist the action of toxic drugs or to utilise new substrates. 
Without discussion of the biological aspects of these effects it will be shown that auto- 
synthetic systems of the kind described above show these characteristics. The treatment 
given goes beyond that given in previous papers (Davies, Hinshelwood, and Pryce, Trans. 
Faraday Soc., 1944, 40,412 ; Hinshelwood and Lewis, Proc. Roy. Soc., 1948, B, 135, 316) in  
dealing with the questions of the rate of adaptation, the stability of the adapted state, and 
the mode in which changed substrates induce the adaptive change. 

In the kind of autosynthetic system present in a living cell 
there is a sequence of enzyme processes each dependent upon material derived from a 
previous one. Suppose two of the enzymes (or mutually interlocked sets of enzymes) are 
present in total amounts X and Y. Let the increase in Y be dependent upon the 
concentration of something derived from the X-set in such a way that we have the 
equations 

(l/X)dX/dt = k ,  and dY/dt = acY, 

where c is the concentration in question. 
c is proportional to the amount x1 per cell, i.e., to X/n, so that 

(a) Resistance to inhibitors. 

By the principle explained in the last section, 

dY/dt = kaXY/n 

Let Y be the constituent whose amount determines division, so that, by the principle 
explained above, Y/n =yl  = p, a constant. Thus we have 

X = XOeklt and dY/dt = kupX 
whence by integration 

X o  and Yo being the amounts at time zero. 
When X and Y are large compared with X o  and Yo, (14) gives 

X/Y = xllyl = kl/kap = x 
The ratio settles down to the constant value x, which gives the value of Xo/Yo, or of 

xl/yl, for a new series of observations made after a small sample of the original material is 
transferred to a new medium. 

Suppose such a transfer is made into a medium containing an inhibitor which in some 
way reduces the rate of synthesis of the Y system. This means a reduction of k to k’ (or 
an equivalent change in a).  Initially the rate of synthesis of the Y system, which 
determines the increase in the cell number n, is reduced, since (l/Yo)dY/dt = k’axl, which 
is less than the previous value in the ratio k’/k. After continued growth in the new 
conditions, however, x1 increases to xl’, since xl/yl changes to x’ which is kl/k’up,  and y1 
by hypothesis is invariant. Thus xl’ is finally greater than xl in the same ratio as k‘ is 
less than k. Thus the final value after continued growth is (l/Y)dY/dt = k‘(k/k’)axl, 
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which is the original value once more. 
proportions which makes the final multiplication rate independent of the inhibitor. 

There is thus an adaptive change in the cell 

Whenever the stable ratio of X to Y is established, it follows from (14) that (l/fi)dfi/dt = 

Examples of the complete adaptation of a bacterial culture to resist an inhibitory drug 
are quite common, and will not be discussed here, the present object being the establishment 
of the principles by which the kinetic calculations can be made. 

We transfer a sample of the material where 
X / Y  = x to a new medium where, since k' is less than k ,  the initial rate of growth is slower, 
and where the final stable value of X / Y  will have to rise to x' before adaption is complete. 
X, /Y ,  will be x, and not x'. 

(l/Y)dY/dt = k ,  = (I/X)dX/dt. 

(b) Rate of develoflinent of resistance. 

From (14) we have 

X X,,ekit " - - _  
k'ap Yo + T(ekif - 11 Y 

1 

When t = 0 this expression is x, and when t is infinite it is x'. The ratio approaches its 
limiting value, however, as soon as ekit becomes substantially greater than unity. This 
means that a very considerable degree of adaptation occurs quite rapidly. The completion 
of the process, however, may require a much longer, and in theory an infinite, time. 

This result corresponds to what is observed, where the initial stages of adaptive 
processes are often very rapid, but their completion may demand a great number of 
subcultures of the organism in the new medium. 

(c) Stability of resistance to inhibitors. This is a complex problem, and has hitherto 
occasioned some difficulty in its interpretation. 

Stability is judged in the following way. The growing material is adapted to a new 
medium (containing the inhibitor) : a sample of it is then re-transferred to the original 
medium where further growth is allowed to take place for a determined time. The 
material is then tested once more for its growth rate in the medium containing the inhibitor. 
To varying degrees it displays an apparent memory for its previously induced power to 
resist the action of the adverse environment. The complete picture of the behaviour is 
rather a complex one. Sometimes the reversion to the unadapted state is rapid, sometimes 
very slow. We shall now consider the explanation of these phenomena in terms of the 
model which has been developed. 

According to equation (15), the re-transfer of adapted material to its original 
environment would result in a change of x back to the old value a t  about the rate of the 
forward change. Thus, further tests in presence of inhibitor would show that a rapid 
reversion had taken place. This, in fact, is what is often observed with bacterial cultures 
which have just become nearly but not very thoroughly adapted to a changed environment, 
so that to this extent the prediction of the model system corresponds to the reality. 

But there is often a state of what may be termed metastable adaptation where the 
material preserves its newly acquired property through many generations of culture in the 
original medium removed from the inducing agent, displaying, as it were, memory of its 
first training. This happens usually only when the initial process of adaptation has been 
carried on for a long time and reached completion. 

(d) Slowness of reversion. To account for this we must reconsider a previous 
assumption, namely, that the rate of functioning of the Y-enzyme in section (a) is directly 
proportional to the concentration, c, of the active intermediate derived from the enzyme 
system which supplies it. In general, the rate will be governed by an adsorption isotherm, 
.and should be set proportional, not simply to c, but to c / (a  + c) ,  i.e., should follow a 
Langmuir isotherm, or some similar equation. This expression gives simple proportionality 
to c when c is small, but becomes independent of it when c is great enough. 
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Now the two cases of adaptation to the inhibitor and reversion to the original state in 

its absence differ in one important respect. In  the adaptive process c will have been 
reduced to a low value and gradually returns to a normal value. Thus it is quite reasonable 
to assume, as has been done so far, that the rate of functioning of the Y-system is directly 
proportional to c. In the reversion, x1 and, therefore, c start a t  a greatly enhanced value 
for the original medium and should gradually fall. But when c is great, the enzyme 
system Y may well be nearly saturated with the intermediate, so that the rate of formation 
of Y does not show any marked increase. In  such circumstances reversion may be very 
slow. As an approximate representation of the adsorption isotherm function c/(a + c) 
when c is great we may write proportionality to clip, where p is a number greater than 
unity. 

The rate of functioning of the Y-enzyme system will now be proportional, not to xl, but 
to ( X ~ ) ~ / P ,  and the equations of sections (a) and (c) assume the following forms : 

The nearer to saturation, the greater will be the effective value of p .  

dY/dt = k a l l ~ P y  = kaXl/py/nl/p = kaXl/p( Y/n)1/Pyl-1/P 

dX/dt = k,X 
= kap’Xl/pYl-l/P, where p’ = (Y/n)l/p 

whence by integration we obtain a modified form of equation (14), namely, 

When t is very great this expression assumes the value (kl/kap’)P = x l .  
If the material has undergone an adaptive change, x1 will change to a new value x,’ 

and the reversion from the latter to the former on re-transfer to the original medium will 
be governed by equation (16) with Xo/Yo = x,’, i.e., (kl/k’ap’)P. Thus we shall have 

For the reversion to be appreciable ekit/p must now considerably exceed unity, and if p 
is great enough this may require very large times indeed, for in the limit, where the active 
intermediate produced by X entirely saturates Y in normal conditions, 9 approaches 
infinity and the reversion becomes infinitely slow. 

Sometimes, adapted bacterial 
cultures survive hundreds of generations in their original medium without losing the 
power of rapid growth in a second medium to which they had become acclimatised. But 
their state is essentially not one of true stability since reversion usually occurs in the long 
run, or may be induced by special means. 

The following 
typical set of facts illustrates the problem to be considered. If certain bacteria have just 
been adapted to resist a drug, then cultivation in the absence of the drug causes rapid 
loss of resistance, as shown in further tests with the drug restored to the medium. If, 
however, the adaptation has been long continued, then the resistance is more nearly 
permanent. It is not the object of this paper to discuss alternative biological explanations 
of this behaviour, but to show in what circumstances the kinetic model under investigation 
would predict it. 

By 
the equations already given we have 

Approaches to  this case are actually encountered. 

(e) Defendence of reversion on. the thoroughness of the $revious adaptation. 

We still envisage the two-enzyme systems X and Y of the previous paragraphs. 

dX/dt = k,X and dY/dt = acY = k,Y 

For a steady state k ,  = k, : otherwise the ratio of X to Y changes, and at  a rate which 
depends upon the difference between k, and k,. The amount of X per cell, xl, adjusts 
itself in the process of adaptation as has been shown. If ac is lowered by any agency then, 
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as shown, x ,  increases and causes a rise in c which in turn increases k ,  till k ,  and k, can 
once more be equal. Suppose in the normal state the Y-system is nearly but not quite 
saturated with the intermediate, and suppose that the inhibitor somehow interferes with 
the supply and reduces c. Adaptation raises c from the lowered value c’ to the normal 
value c, i.e., from well below the value required to saturate the Y-system nearly to this 
value again. The Y-system responds. Now if the inhibitor is removed, the increased 
proportion of x1 raises c to a new value c”, which corresponds more nearly to saturation 
than did the original value c. Thus k,  now exceeds k,, and the ratio of XlY regresses, 
i.e., reversion occurs. But the process may be quite slow (see last section) if we are near 
enough to saturation for the increase in k,  to be small. 

So far we have considered two consecutive sets of enzymes, but cells are much more 
elaborate organisations. Although we have assumed ac to suffer the main effect of the 
inhibitor, the relations of all sorts of other cell processes may have been affected in a 
secondary degree, and in the course of adaptation numerous secondary adjustments are 
likely. Suppose now that, although the main effect of the inhibitor is on k,, yet k ,  also 
suffers some small reduction. The adaptive change which leads to the restoration of k ,  
can be very slow, partly because the reduction in any case is not great. In the meantime 
k,  can rise, not to k,, but to this lowered value k,’. Presently, however, k ,  is restored to 
its initial value, and may now rise to a still higher value k,” on return to the normal 
conditions. Since k ,  was in any case near to its saturation value, an extremely small 
increase in k,” will be sufficient to balance the increase which has occurred in k,”, and to 
convert a moderate rate of reversion into an extremely slow one. 

There are other possibilities depending upon the complicated interlocking of cell 
processes, but they will not be further discussed here. 

(f)  Adaptation to new substrates. Bacterial cells are capable of utilising fairly varied 
sources of carbon, though the compounds which will support growth are not usually wholly 
unrelated. Glucose and many other sugars form one of the main groups, and the other 
consists of the series of breakdown products derived from glucose, namely, glyceraldehyde 
and its derivatives, pyruvic acid, and various acids of the dicarboxylic and tricarboxylic 
acid series which are connected in a definite metabolic pattern (Krebs cycle and its variants). 

It is a fundamental question whether in the adaptation to utilise a new substrate 
existing enzymes are used in changed proportions, so that their previous ratios in the cell 
are quantitatively altered, or whether existing enzymes undergo qualitative alteration. 
An outline of the theory of the first type of process has already been given (Hinshelwood, 
ofi. cit., p. 180; Hinshelwood and Lewis, Zoc. cit.), and the second type has been dealt with 
in a qualitative way only. It is proposed here to develop a view which is a synthesis of 
both these alternatives, and which links together all the preceding parts of the present 
paper. 

We have already envisaged the autosynthetic system as consisting of interlocking parts, 
e g . ,  a certain type of nucleic acid which guides the formation of a certain type of protein 
and vice versa. The relevant equations are 

dR/dt = A,P,  and dP,dt = BIR . . . . . . (18) 
where R is the amount of the nucleic acid, and P,  that of the protein, A ,  and B, being 
constants. (The specific identification of R and P,  as nucleic acid and protein is of course 
not essential, but illustrative : what matters is the interlocking system.) 

Now let it be supposed that the protein P, constitutes the enzyme (enzyme X of the 
previous paragraphs) which by interaction with a substrate S ,  gives an intermediate 
(concentration c,) which in turn is used by the enzyme system Y, where Y ,  as before, is 
the critical division-determining component. 

As previously shown, in the steady state (18) leads to R = Roekit, P,  = (P,),ekJ 
where k12 = A$,  and RIP, = (A,/B1)+. 

dY/dt = uclY = kuxlY  = k u X Y / n  = kccP,Y/n = kccpP, 
Then as in (14) we have 

As in section (a) we have also 
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In the steady state P,/Y = k,/kap and R/Y = A1/kap, since k, = (AIBl)&. The growth 
rate constant (l/n)dn/dt = (l/Y)dY/dt = (l/R)dR/dt = k,. 

When growth occurs in the substrate S2 we must suppose that a different enzyme- 
protein, P,, is involved, and that this leads to the formation from the new substrate, in 
one or more stages, of the intermediate required for Y. We shall now have 

dY/dt = ac2Y = k‘apP2, 

c2 and k’ being different from c, and k ,  respectively. 
In the new steady state, R will attain the value given by R/Y = A,/k’ap, so that 

Rs,/Rs, = A,k/A,k‘. If A ,  and A, are not very different, e.g., if the two proteins P, and 
P2 are about equally efficient in guiding the nucleic acid formation, but if k’ is much less 
than k, i.e., if the new substrate is a much less efficient source of the required intermediate, 
then, just as in the case of the inhibitor action, the response of the cell is an expansion of 
the basic formative structure R. Until this has occurred the growth rate remains below 
its optimum k,’. 

For the steady states we have then 

and 

The maximum growth rate constants for the two substrates are k, = (A,B,)i and k,’ = 
(A,B,)*. The RIP ratios are determined only by A and B and are unaffected by k or k’. 
On the other hand, the ratio of R and P themselves to Y depends upon k or k’ and settles 
down to a greater value the smaller these constants are. The optimum degree of adaptation 
is determined therefore by A and B only. If their product is small, no amount of adaptive 
response will increase the growth rate beyond what they allow. If, on the other hand, 
their product is large but k’ is very small, the initial rate on transfer to the new substrate 
will be small but can rise to a high value in time. This kind of behaviour is in fact found. 
Bact. Zactis aerogews when first transferred from glucose to D-arabinose shows a very long 
lag but finally attains a growth rate comparable with but still less than that in glucose. 

In  equations (4a) 
and (4b) ,  X becomes R, Y becomes P,, Y o  = (P,), = 0, u = A,, and p = B,; k is k,‘. 
Then 

The lag on transfer from S, to S,  is roughly calculable as follows. 

P, = (~k,’R,/A,)(ek~t - e-kl’t) 

so that dY/dt = k‘apP2 = (~k’k1’apRo/A2)(eR1’t - e-hi‘t) 
= (4 k’k,’apR,/A2)(2k,’t) approx. for small changes. 

Since Y = pn, we have for the early stages 

(l/lz)drt/dt = k’(k,’)2(a/A2)(R,/lz)t . . . . . (20) 
The definitition of the lag, L,  is necessarily somewhat arbitary, but if we take it here as 

the time at which (l/n)dlz/dt begins to assume some assigned value A, then, since at  the 
start R/Y = Al/kap = R,/Prt, 

L = A(A2/a)(n/Ro){l/k’(kl’)z) . . . . . . (21) 
= A ( 1 /k ,I) (k  /k’) ( A  , /A  ,) . . . . . . . (22) 

Equation (22), which makes the lag independent of R, in appearance, assumes of course that 
R, has the equilibrium value corresponding to S,. If k’ is small, in particular, the lag is 
long. 

As in the case of drug resistance, 
the equations so far given predict rapid adaptation and rapid reversion on transfer between 
two media containing S ,  and S,  respectively. This is sometimes observed, but often the 
adaptation is rather stable. 

Once again it is necessary to reconsider the tacit assumption that the rate of synthesis 
of enzyme Y is directly proportional to the concentration c. This assumption leads to 

(g) Stability and reversion. of substrate adaptation. 
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(19). Suppose now 
we first effect equilibration in substrate S, where R/Y reaches a definite value, and then 
transfer to S ,  where k' is very small, so that R/Y expands greatly. Now re-transfer to S,. 
The amounts of R and presently of P,  per cell will be abnormally great. If there is a 
linear relation of dY/dt to c, Y will expand again relatively to R and P,  and the old ratio 
will be restored. If, however, Y was already saturated in the normal functioning in S,, 
the rise in c will produce no response. The values of (l/R)dR/dt and of (l/Y)dY/dt will 
be k,, and the second will not rise above it. Hence the abnormal proportions will be 
preserved, and will give the cells an abiding advantage if a t  a later stage they are yet again 
transferred to  S,, since in (21) R,/n will have, not the value there calculated, but an 
abnormally great value. This circumstance will not, however, abolish all the lag, since 
P, has in any case to be formed. The lag will, however, be less than it would have been 
had the previous adaptation not occurred. 

That in a common substrate like glucose the enzyme Y may often be working at near 
saturation is quite possible, since this point would be precisely that at which adaptive 
processes of other kinds in S ,  would have reached the limit of their effectiveness. 

It is not suggested that the mechanisms here discussed in any way exhaust the 
possibilities for the explanation of the varied phenomena of adaptation to new substrates. 
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If enzyme Y becomes saturated, the rate cannot rise above a limit. 
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